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In this paper a new and more comprehensive characterization of the insulating state of matter is developed. 
This characterization includes the conventional insulators with energy gap as well as systems discussed by 
Mott which, in band theory, would be metals. The essential property is this: Every low-lying wave function <£ 
of an insulating ring breaks up into a sum of functions, <£ = S-^00 <&M, which are localized in disconnected 
regions of the many-particle configuration space and have essentially vanishing overlap. This property is 
the analog of localization for a single particle and leads directly to the electrical properties characteristic of 
insulators. An Appendix deals with a soluble model exhibiting a transition between an insulating and a con­
ducting state. 

1. INTRODUCTION 

MOST of the recent developments of many-body 
theory take as their starting point a gas of free 

particles. This approach is appropriate for a wide class 
of systems including nuclear matter, electrons in metals 
and liquid helium. However, as has been emphasized 
especially by Wigner1 and Mott,2 a collection of elec­
trons at low temperatures and low densities must be 
expected to occupy states which are quite unrelated to 
a gas-like phase and in which the electrons are 
"localized." 

Just what is the precise nature of this localization, 
in view of the fact that certainly there are finite overlap 
integrals between the single-particle electron wave 
functions? This is one of the questions to which a sharp 
answer is proposed in this paper. 

Another closely related question is concerned with 
the electrical properties of such localized electrons. If 
their ground state is isolated from the excited states by 
a finite energy gap, as in a "conventional" insulator 
like NaCl or Ge, the low-frequency conductivity at 
r = 0 ° is immediately seen to vanish, by well-known 
elementary considerations. However, Mott has con­
jectured the existence of electronic systems without an 
energy gap which are also strict insulators. In this paper 
we show that insulating characteristics are a strict 
consequence of electronic localization (in an appro­
priate sense) and do not require an energy gap. 

To make the issues more precise, consider a regular 
cubic lattice of hydrogen atoms with lattice parameter 
a at r = 0 ° . We begin by considering the high-density 
regime, a<8Cao, where aQ is the Bohr radius. 

Here the kinetic and potential energies per particle 
are, respectively, 

^ 7 l X R y X ( a o A ) 2 , (1.1) 

v~y2XRyX(a0/a), (1.2) 

where 71 and 72 are of the order of unity. Hence 

« X (1.3) 
* Supported in part by the Office of Naval Research. 
1 E. Wigner, Trans. Faraday Soc. 34, 678 (1938). 
2 N. F. Mott, Proc. Phys. Soc. (London) 62,416 (1949); Progr. 

Metal Phys. 3, 76 (1952); Can. J. Phys. 34, 1356 (1956); Nuovo 
Cimento Suppl. 7, 318 (1958); Phil. Mag. 6, 287 (1961). 

Under these circumstances we expect a state resembling 
a Fermi gas and that the system will have a metallic 
character. If we denote the conductivity by 

cr(co)==(r ,(a))+i(r , /(co), (1.4) 

we expect at low frequencies the behavior characteristic 
of free acceleration, 

a? —> 0: <J" (co) = — ne2/m*o), (1.5) 

where n is the density of the electrons and tn* is an 
effective mass parameter, of the order of the free elec­
tron mass. 

Now consider <T,r(u>) as the ratio (a/ao) grows and the 
mean density of the electrons tends to zero. The elec­
tronic density between the hydrogen nuclei will ap­
proach zero and hence free acceleration will certainly 
become more difficult. However, an interesting question 
is now this: As (a/ao) grows to infinity, does 

(a) the conductivity <T"(CO) for low co maintain the 
form (1.5), but with m*/m presumably growing to in­
finity, i.e., the system remains a metal but with a larger 
and larger effective mass; or 

(b) does the nature of the wave function change 
abruptly for some critical value of a/ao, beyond which 
the electrons are localized and free acceleration ceases 
entirely in the sense that 

l i m cocr" (co) = :0. (1.6) 

Mott has given qualitative arguments in favor of 
the second answer and adduced experimental evidence 
to support this conclusion. In this paper we aim to 
place this conclusion on a more precise and firm theo­
retical basis. 

2. CURRENT AND GAUGE TRANSFORMATION 

We consider a system in the shape of a ring. For our 
purposes this is sufficiently characterized by imposing 
periodic boundary conditions in the x direction 

^(xxyxzi) 
= $(xiy1z1; •• ',Xi,yi,*i'> • • • ) • (2.1) 
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FIG. 1. The function £(*)• 

We find it very useful to introduce, as a formal de­
vice, a constant vector potential in the x direction 

A a - ( c / e ) k , 

k=(£,0,0). 

(2.2) 

(2.3) 

(This may be thought of as arising from a magnetic 
flux through the center of the ring.) It gives rise to no 
electric or magnetic fields inside the system. Our Hamil-
tonian is then, in atomic units, 

A straightforward calculation gives for the induced 
current density 

/«=cra(co)<Se<^S (2.10) 
where 

lrN 1 / 1 
* » = - \T—-r\(a'\P\a)\H r 

QLio) io) a \Ea'—Ea—a)—is 

+ Yl. (2.U) 
Ea'-Ea+u+is/J 

In particular for the imaginary part of cra(co) we find 

1 l r / Ea'-Ea-oo 
QcoL «' \(Ea'-Ea-u)2+s2 

Ea'-Ea+a XT 
;)J. (2.12) 

# ( * ) = £ [*(pH-k)H-7<;]+tf, (2.4) 

where Vi is the external potential and U is the potential 
energy of interaction. 

We denote the eigenfunction and eigenvalues of 
(2.4) and (2.1) by <£«(&) and Ea(k), where the a's are 
state labels. Then 

Ea(k) = t*a(k),H(k)*a(k)l (2.5) 

and, because of the stationary nature of (2.5), 

dEa(k)/dk= {#«(*), ZdH(k)/dk¥>a(k)}, 

= DM*),E(P«+k),*«(ft)], (2.6) 
i 

where 0 is the volume and Ja(k) is the current density 
in the x direction carried by the state a. 

Another result which follows directly from (2.4) is 

(£ a ' -E a+co)2+s2 

Comparison with (2.7) gives the important result 

\d2E 
limu<r«"(w) = . (2.13) 
"-*0 ti dk2 

For orientation we now consider two especially 
simple systems. 

Free Particle 
Here 

#(£) = i (p+k) 2 

whose eigenfunctions are, for all k 

¥>(r)=(l /a"V«", 

(2.14) 

(2.15) 

where, for simplicity, we assume periodic boundary 
conditions also in the y and z directions, which is how­
ever of no further consequence. Here 

where 

d2Ea(k)\ \(a'\P\a)\2 

1 =N-2 £ ; , 
dk2 i&̂ o a'^a Ed—Ea 

P=(Zpi)x. 

(2.7) 

(2.8) 

Next we consider the response of the system to a 
uniform time-dependent electric field in the x direction, 
Se^e8*. Here s is a positive infinitesimal which de­
scribes a field whose amplitude is slowly being turned 
on. The appropriate Hamiltonian has again the form 
(2.4) with 

k= (!/<«)(&<*•+•>*,<>,(>). (2.9) 

(Here, and in what follows, s is dropped where it plays 
no significant role.) 

q{= (2ir/L)xl, 1=0, ± 1 , ±2 , • • • 

to satisfy the ring conditions (2.1). Clearly 

-E(&) = l(<Zi+£m(<722+<?32). 

Hence by (2.6), (2.7), and (2.13) 

/ ( * ) = - ( I / O ) (ji+ft), 

<PE(k)/dk*=l, 

1 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Km cocr" (o>) = . (2.20) 

These are all very familiar facts. Note, however, that 
in the present context they depend on a failure of gauge 
invariance in the conventional sense.3 One is accus­
tomed to assuming that the spectrum of (2.4) is inde­
pendent of k, since the latter may be removed by a 

3 Y. Aharanoff and D. Bohm, Phys. Rev. 115, 485 (1959). 
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simple gauge transformation 

S = e x p ( - ^ I > i ) - (2.21) 
i 

However, the new wave function 

$ ^ $ e x p ( - i f e £ * < ) (2.22) 
t 

no longer satisfies the ring condition (2.1) if $ did, and 
hence is not admissible. Thus it is not surprising that 
the correct E does have a k dependence. 

Localized Electron 

As a second example consider an electron bound near 
the origin in a region of linear dimensions d<KL. 

Define now %(x), for any value of x, as the unique 
member of the set 

X+PL j/=0,=fcl,±2, ••• (2.23) 
such that 

-L/2<£(x)^L/2. (2.24) 

(See Fig. 1.) Then if we denote the bound state of the 
electron corresponding to k = 0 by $a(x,y,z) 0), we have 

$a(x,y,z;0)±0 for £(*)«±Z/2 . (2.25) 

Here we have introduced the symbol = for equality 
apart from terms which tend exponentially to zero as 
L—»oo in a manner such as e~Llh where b is of atomic 
dimension and independent of L. 

We now see that 

&«(*,y,*', k)±$a(x,y,z', 0)er-***c*). (2.26) 

For the right-hand side of (2.26) satisfies the Schroed-
inger equation everywhere (except at the isolated points 
x= ±L/2 , ±3Z,/2, • • •), and also obeys the ring bound­
ary conditions. It does have impermissible discon­
tinuities at the points #=dbL/2, zb3/L2, • • •, but since 
the wave function is near vanishing (in the sense = 0) 
at these points, these discontinuities are of no conse­
quence.4 We therefore have 

Ea(k)±Ea(0), (2.29) 
and hence 

Ja(fc) = 0, (2.30) 

limuer«"(») = 0. (2.31) 
G)-»0 

Equations (2.30) and (2.31) reflect the nonconducting 
nature of the state. We see that it is intimately related 
to its localized character which permits the application 
of a conventional gauge transformation. 

4 If we consider L to be the x dimension of the unit cell of a 
periodic lattice, and remember that the introduction of k into H 
is equivalent to a change of boundary conditions, we see that these 
facts are familiar results of the extreme tight binding limit of 
band theory. 

3. GAUGE INVARIANCE—SECOND-ORDER 
PERTURBATION THEORY 

We now return to the lattice of hydrogen atoms de­
scribed in the introduction. We demonstrate in this 
and the following section that for sufficiently large 
values of a/ao (low density), the energies of all low-
lying levels are gauge invariant in the sense of (2.29), 
from which the insulator properties (2.30) and (2.31) 
follow.5 

A major difficulty is that the wave functions for the 
lowest lying states of this system, which are presumably 
of an antiferromagnetic character, are not known even 
in zeroth order of approximation. For this reason we do 
not discuss the wave functions themselves but rather 
generate a ^-independent effective Hamiltonian from 
which the gauge invariance of the entire low-lying part 
of the spectrum follows. 

The external potential energy of our hydrogen lattice 
is 

F(r) = X > ( r - R , ) , (3.1) 

where we assume v(r) to fall off rapidly,6 but where, 
since x and x+L are physically identical, we have 

v(x+L, y, z) = v(x,y,z). (3.2) 

In this lattice there are N particles interacting with a 
short-range7 repulsion, giving rise to the additional 
potential energy 

tf=5>(rr-ry), (3.3) 

where the u's satisfy periodicity conditions analogous 
to (3.2). The total Hamiltonian, for k=0, is then 

H^lW+Virdl+U. (3.4) 
i 

We shall work in a representation of Wannier func­
tions wn(t— R„) associated with the single-particle 
Hamiltonian 

h=hf+V(r), (3.5) 

We denote by <pn(*,q) the normalized Bloch-like 
eigenfunction of band index n and wave vector q 
associated with h: 

*>»(r+*; q) = exp(iq-T)^w(r; q), (3.6) 

qx= (2T/L) X integer, 

where T is a lattice translation vector. Then 

w»(r- R.) = (V^1/2) E **(r,qy*•*. (3.7) 
q 

6 In Sec. 5 we add to these the result limŵ oo"'(c«>) =0 . 
6 The true v(r) is of course Coulombic and a satisfactory treat­

ment of such long-range forces would, as usual, require a more 
subtle discussion. We cannot, however, see any physical reason 
why our conclusions should be altered by the long-range char­
acter of the true interactions. 

7 See remarks of footnote 6. 
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Notice that, in view of (3.6), our Wannier functions 
satisfy periodic bondary conditions 

wn(x+L, y, z) = wn(x,y,z). (3.8) 

Denote by Anmv the destruction operator for an electron 
described by the Wannier function wn(t— R„) and spin 
tn=dtz%. We then use as a basis the set of states 

\AnNmNvN ) ' ' • \Animivi J* , (3.9) 

where ^ ( 0 ) is the vacuum state. 
In this representation we write the Hamiltonian in 

second quantized form as the sum of three terms: 

H=Ho+Hx+H'. (3.10) 

Ho is diagonal and describes (a) the expectation 
value of the one-particle part of H and (b) that part 
of the expectation value of U arising from pairs of 
Wannier functions on the same site R„. If we introduce 
the number operator 

then # 0 has the form 

HQ= X) €wiVn,m,j>+]C S 2Z Unn'NnmvNn>m>v. ( 3 . 1 2 ) 
n,m,v nm n'm' v 

The spectrum of Ho is schematically shown in Fig. 2. 
Eo corresponds to each site being singly occupied by a 
particle in the lowest band Wannier function, spin up 
or down (degeneracy = 2 ^ ) ; E\ to one site having an 
electron in the Wannier function of the first excited 
band (degeneracy=N.2N); E2 to one unoccupied site 
and doubly occupied with electrons in the lowest 
Wannier function, etc. Notice that the spectrum is dis­
crete. We denote the general eigenvalue of Ho by Ej, 
and its eigenstates of the form (3.9) by ^fjj, where j 
is a degeneracy index. 

Hi is defined in such a way that Ho+Hi is identical 
with H within each subspace ^JJ, j= 1,2, • • •, but has 
no matrix elements connecting states of different / ; i.e., 

(/ ' , /1H11 J,j) = 6j,j£(J',j' | H | J,j)-Ej6rjl. (3.13) 

Finally H' is that part of H which connects states of 
different / 

(J',j'\H'\J,J)= (\-Sj'j){J',j'\H\J,j). (3.14) 

We are interested in the low-lying states which 
arise out of Eo when the effects of Hi and H' are taken 
into account, which will partly remove the degeneracy. 
In the limit of large separation the energy of these 
states is almost wholly determined by Ho. Furthermore 
Eo remains separated from the first excited level by a 
finite gap. For these reasons we feel justified in assum­
ing that the effects of Hi and Hf may be treated by the 

appropriate degenerate perturbation theory, although 
a formal proof of its convergence is not attempted. We 
therefore write 

H=Ho+\Hi+\H' (3.15) 

and treat X formally as small, although of course in 
fact X= 1. We now look for a canonical transformation 

i2 

ff=e-iSHeiS=H+i[H,S~]+-ttH,S2,S~]+- • (3.16) 
2 

with 
S=XS 1 +X 2 S 2 +-- - (3.17) 

which eliminates matrix elements connecting states 
with 7 = 0 to states with 7 ^ 0 , to all orders in X. Com­
bining (3.15), (3.16), and (3.17) we obtain 

H=Ho+\{H1+H,+ilHoiSi']} 

+\*{i£Ho,S2-]+ilHi+H', 5 J + (i2 /2)[[^0 ,51] ,51]} 
+X 3 - - - . (3.18) 

I t is evidently possible to choose S to all orders such 
that 

(J',j'\S\J,j) = 0 unless / = 0 , / V 0 ; 

or j > * 0 , / ' = 0 , (3.19) 
To first order in X 

(J',f\Si\0,j) 

= {\/i)ll/{E,-Ej')-]{J',f\H'\Q,j), J V O (3.20) 

and hence up to second order in X 

(0,y, \S\ 0,j1) = (0 j ! I H0+\H x 10j2) 

_ _ (0,MHV',j')(J',j'\H'\0Jd 
+X2 2* • (3.21) 

J'J Eo-Ej, 

H is the new effective Hamiltonian in the 2N dimen­
sional space, 7 = 0 , j = 1 , - • -2N. 

Next we construct in a similar way the effective 
Hamiltonian corresponding to 

# ( * ) = £ [ K p H - k ) 2 + F ( r ; ) ] + £ / (3.22) 
i 

with k^O. For this purpose we use the fact that wn(x) 
is an exponentially decreasing function of/,8 the char­
acteristic length being an atomic dimension.9 We now 
introduce a new representation in which the Wannier 
functions wn(t) are replaced by 

wn(t; k) = wn(r)e-ik^*K (3.23) 
8 W. Kohn, Phys. Rev. 115, 809 (1959). Actually this paper 

establishes the exponential drop of Wannier functions in one 
dimension only. We assume here that three-dimensional Wannier 
functions have the same property. 

9 It must, however, be remarked that, as the band index n 
approaches infinity, the spread of the Wannier function also in­
creases without limit. But one may see, in simple model calcula­
tions, that this difficulty is spurious and that one arrives at the 
correct conclusions by regarding the spread of wn as generally of 
the order of an atomic dimension rather than L. 
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Like wn(r) these functions satisfy the ring condition 
(3.8). The lack of continuity at x—L/2 is of no conse­
quence in view of the just mentioned near vanishing 
of wn(r) at that point. 

Consider now some typical matrix elements of H(k). 
For example 

• ^ ^ [ ^ ( r - R i ' ^ ^ K P + k r ^ r - R i ; * ) ] . (3.24) 

This is clearly a function only of R/— Ri, and we may 
therefore take 

*(*i) = 0. (3.25) 

Because of the localization of the Wannier functions it 
then follows that unless 

^(X1 ')«L/2 

the matrix element vanishes. In view of (3.24) and 
(3.25) we obtain 

i f i = r - ^ ^ ' - ^ [ w t t ' ( r - R i , ) > i ^ n ( r - R i ) ] . (3.26) 

Quite similarly 

M 2 ^ [ ^ ( r - R / , k) 7(r )w„(r-Ri ;*)] (3.27) 
^ e - ^ c x i ' - x i ) ^ , ( r - R/), V(r)wn(x-Rx)] 

and 

Jf a s ^ C n - R / , *)w»^(r,-R2
,*)l 

X«(ri—r2)wm(ri—Ri, &)wn(r2—R2, *)] 
i e r ^ C i ' + w - ' i - w ^ C r i - R i O w n ' C r i - R s O , 

X w(rr- r,)«w(ri- Ri)w»(r,- R2)], (3.28) 

where we have used the assumed short-range properties 
of v and u. 

The construction of the effective Hamiltonian pro­
ceeds now exactly as before and leads again to an ex­
pression of the form (3.21). Clearly by (3.26)-(3.28) 
all diagonal matrix elements Ej are the same as before. 
Off-diagonal elements differ by phase factors which lead 
to such combinations as 

eihi (Xi'+X2'-xi-x2)e-*** (Xi'+x2'-xi-x2) = 1 # (3.29) 

Therefore 
3(k)±B(0) (3.30) 

and consequently, up to second order in perturbation 
theory, the entire low-lying part of the energy spectrum 
of E{k) is independent of k. 

4. GAUGE INVAMANCE—ARBITRARY ORDER 
PERTURBATION THEORY 

All higher order terms of H(k) will contain products 
of matrix elements of the form 

(0J8 |ff |/<~> J<»>)... (/c«j(2)|5|jra>ja)) 

X ^ ^ l t f i O i i ) , (4.1) 

where R is either Hi or H'. Such an expression may be 
partly characterized by the following kind of graph to 
be read from the bottom up (Fig. 3). This graph states 

FIG. 3. A typical interaction diagram. 

that Ja\ y(1) has one additional occupancy of sites Ri 
and R3, and no occupancy of R2 and R4 (holes); and 
that state J(2), j{2) has one additional occupancy of Ri 
and a hole at R5. The initial and final states each have 
exactly one electron on each site. The phase factor 
associated with Fig. 3 is 
y__ e-ikt(Xi+X3-X2-X4)e-ikt (X2+X4-X3-X5) 

Xe-^(xB-x1)# (42) 

As in Sec. 3 we may assume that all X{ are close to the 
origin, which permits us to drop the £'s and gives / = 1. 
Thus, to any finite order m (i.e., m fixed and independent 
of L) we see H(k) to be indpendent of k. 

A new feature arises in very high order [0(L/a)] 
perturbation theory. Consider for example the following 
graph (Fig. 4), where Xv=va and Ma—L, The phase 
factor associated with this graph is 

y = e-imX2-Xi)e-iZ(X3-X4)e-it(XM-Xi) 
(4.3) 

Such a term does introduce a k dependence into S{k). 
However, since we may assume that the procedure of 
successive canonical transformations converges for large 
I at a rate independent of L, terms of this very high 
order are exponentially negligible. 

This concludes the demonstration that to all orders 
in perturbation theory the low-lying levels are de­
scribed by an effective Hamiltonian H which is inde­
pendent of k, apart from terms which are exponentially 
small in L and hence negligible. Thus, all these levels 
Ea(k) are in fact independent of k, from which it fol­
lows by (2.6) and (2.13) that none of them carry a cur­
rent or exhibit a free acceleration in an external 
electric field.10 

5. NATURE OF THE LOCALIZED MANY-PARTICLE 
WAVE FUNCTION 

When we are dealing with a system which is strictly 
localized in the usual three-dimensional space, the inde­
pendence of the spectrum of k is immediately demon-

FIG. 4. A pathological high-order diagram. 

10 In particular this means that spin-wave states of an insulator 
carry no current and exhibit no free acceleration in a dc electric 
field. This is not an entirely trivial result, since it cannot be de­
rived from any selection rules. In fact, for a ring of finite L, spin 
waves do carry a finite though small current. 
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FIG. 5. Wave function of well-localized particles on a ring. 

strated: If <£a(0) is eigenfunction of 21(0), with eigen­
value Ea, then it is well known that the function 

#a(*)sar<*2!«#a(0) (5.1) 

is an eigenf unction of H(k) with the same eigenvalue 
Ea. On a "ring" this argument in general breaks down 
because, e.g., 

^a(x!+L,yhZi; •••;*) 
= e-ihL3>a(xi,yi,zi\--\k) (5.2) 

and therefore violates the ring boundary condition. 
Nevertheless we say in Sec. 2 that for a particle local­
ized near the origin we could define 

$a(x,y,z; k)^=e~ik^x)^a(x,y,z; 0), (5.3) 

which is single valued and gives rise to an eigenvalue 
Ea(k) which, apart from terms vanishing exponentially 
with L, is independent of k. The essential feature in the 
demonstration of this fact was that in going around 
the ring the wave function became exponentially small. 
The discontinuity in the phase factor occurred in the 
region where the function was exponentially small and 
thus introduced a negligible error in the energy. A plot 
of <£a(#,;y,z;0) as function of x has the following 
general appearance (Fig. 5). Note the essential char­
acteristic that it consists of a sequence of practically 
disconnected parts.11 

We show that a similar disconnectedness exists also 
for our many-particle system and is responsible for its 
insulating properties. 

The essential features may be seen from an examina­
tion of the zeroth-order wave function. Denote one of 
the eigenfunctions of (0,y2|2?|Oji), e.g., (3.21), by 
(0ji |a). Then the full eigenstate of H is given by 

*«= E *Ji.h(Ji,jiI eiS 10,it) (0J21a) (5.4) 

where 
^ ( 0 ) = L^o,y2(OJ2|a) (5.5) 

*«(1) = E VjLhViji I tf 110,i«) (0,i21 a), 

etc. The states \£of/ all have one electron on each site in 
11 At this point we make contact with an important recent paper 

by C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). Yang considers 
the behavior of density matrices in going around the ring and notes 
that for normal (i.e., nonsuperfluid) systems, they are similarly 
localized. From this point of view there is no basic distinction 
between a normal metal and an insulator. In the present work, 
where we consider the behavior of the wave functions in going 
around the ring, this distinction becomes apparent. 

the ground-state Wannier function with spin up or 
down, and ^a

(0) is a superposition of such states. Evi­
dently the spatial wave function corresponding to ^o

(0 ) 

will be large whenever 

ri~RV(i)-\-niiL, (5.6) 

where R„(,-> is one of the lattice vectors which we may 
restrict to the interval 

with 
-L/2<Xp^L/2 

Z I , = 0; 

(5.7) 

(5.8) 

the set v(i) exhaust all v; nti is an integer; and L is a 
vector of length L in the x direction. 

We may write the periodic Wannier functions in the 
form 

wn(t— R„)— E ^ ( r - R . - w L ) , (5.9) 

where wn is the Wannier function for the infinite in­
terval. Then the wave function <£>a

(0) can be broken up 
correspondingly into an infinite sum 

$a(0) = E $«(0) (wi,w2, • • • mN). (5.10) 

where <£a
(0)(wi,- • •) is obtained from <£a

(0)(0,0,- • •) by 
shifting the locations of the Wannier functions from 
Ri, R2, • • • to Ri+wiL, R2+w2L, etc. We now show 
that each 3>a

(0)(mi,W2,- • -WIN) is spatially localized in 
the 3—2V dimensional space and has negligible over­
lap with all other <£a

(0) (mi,m2, • • • niNf), for which 

The localization is evident. Thus ^«<°>(0,0,- • -0) has 
an electron localized near each lattice point in the 
volume A XL where A is the cross sectional area of our 
ring, so that this function extends only slightly beyond 
the boundaries of a hypervolume of dimension (AL)N. 
To estimate the overlap, we consider the integral 

1= / Oo(ti— Ri—wiL)- • •w0(rN—'RN—mNL)']2 

X[tfo(ri-Ri ,--wi ,L)- • "Wo(rN-1RN
f-tnN'L)li 

XdtV"dxN. (5.11) 

We have chosen an integral with nonnegative integrand, 
so that accidental cancellations cannot occur. 

The R/ are some permutation of the R„; they arise 
from the antisymmetrization of the wave function. For 
m i = " "WIN' — O and R/ = R; (maximum overlap) I has 
the value 

h=QNt (5.12) 
where 

H w<f(r)dt. 
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For the general case we use an upper bound of the form 

•uV (r)®0
2(r- S)dr ̂  Qr\ w , (5.12') 

A177 

/ « 

where S is an arbitrary lattice vector and b is a char­
acteristic length related to the range of the Wannier 
function. Then we may write 

I$Io(^Z-T.\(X,'--X,)+(tn,'-m,)L\/b'] 
V 

^IQexpl-\Z(Xv
f-Xv)+(mv

f-mv)L\/b'] 

This result implies that the entire configuration space 
— oo <Xi,yiizi< + <x> may be divided into a sequence of 
geometrically similar nonoverlapping regions, (RM, and 
their outside (R' such that for every a the partial wave 
function ^>«,M is confined to (RM-12 We shall see that 
from this property all the characteristics of an electrical 
insulator follow. 

6. ELECTRICAL CONDUCTIVITY OF LOCALIZED 
ELECTRON SYSTEM 

It is clear from the above discussion that if <£a(0) is 
a perturbation eigenfunction of H(0), then 

= IQ exp[— | E (*»/—mv) \ L/b~] 
V 

^loexpC-lAf'-AflL/ft] , (5.13) 

J / = L w , (5.14) 

where 

In quite the same way we can derive an upper bound 
for the unintegrated product of two wave functions, 

|iD0(ri—Ri—wiL)- • -tDo(r^—Riv—w^L)| 
Xl t fot r i ' -Ri ' -wi 'L)- • -tD0(r2r-Rj/--W2/L)| 

< - C e r i M ' - M | L / C j ( 5 < 1 5 ) 

where C is a constant of order ar3N and c is a length 
similar to b. 

Thus we see that each zeroth-order wave function of 
the system breaks up into an infinite sequence of dis­
connected equivalent pieces, each of which is char­
acterized by a common value of M: 

*«(*) = E $«,Mexp[-;&(2>~JkfL)] (6.1) 
M=—oo 

is an equally good perturbation expansion of $«(&) 
which, because of the nonoverlap, has precisely the 
same energy 

[ ^ W , ^ ( ^ « W ] = [ $ a ( 0 ) , F ( 0 ) $ a ( 0 ) ] , (6.2) 
or 

£«(*) = £«(0). (6.3) 

It can be directly verified that the procedure of Sees. 3 
and 4 leads exactly to the function (6.1). 

From (5.18) follow at once the insulating properties 

ja=0, lim ooo-a" (co) = 0. (6.4) 

These properties are, however, not yet sufficient to 
assure that the system is an insulator; they are also 
shared by metallic alloys. We need still to show that 

M~—oo 
(5.16) lim ad (w) = 0, (6.5) 

Consider now an arbitrary one-particle position 
operator EiG(**)« It is clear from (5.15), and may be 
simply verified, that 

L $ « , M ( 0 ) * E G(Ti)*a,.M>Mdt1- • -dtN±Oy 

M^M', a, a' arbitrary. (5.17) 

Furthermore, since the perturbation corrections ^a,M
(1\ 

etc., differ from the unperturbed function by having a 
small number (of order 1) of Wannier functions 
shifted through distances of the order of atomic dimen­
sions and possibly excited, it is clear that if the per­
turbation series converges, then we may write for the 
full wave functions 

where aa' is the real (absorptive) part of the conduc­
tivity, given by 

<r„'(co) = - - £ l ( « ' M « ) | 2 

Q, CO a 

Xt*(Ea.-Ea-<*)-b{Ea.-Ea+<*R. (6.6) 

*P$c4ri---dtN (6.7) 

Here 

(af\P\a)^( 3>a 
J a" 

J Q 

$ a = E * a , M , 
M*=>—oo 

(5.18) 

where 

/ : 
$a,M* E G(ti)$a',M'dti- ' ' dtN±0 , 

MT*M', a, a' a rb i t r a ry . (5.19) 

( E *a',M>*P E *«.*) 
QN M ' * = — O O Jlf==—oo 

XdtvdtN, (6.8) 

where the integration goes over the standard region of 
volume tiN, bounded in the x directions by —L/2 
^Xi<L/2. 

12 If we start at a point (ri, • * • TN) in 61M and move one of the 
x coordinates around the ring, we come to a corresponding point 
in (Rjif+i. We may remark however that for our purposes it is not 
sufficient that the wave function vanishes when a single x\ is 
taken around the ring, but it must vanish on every path leading 
from (RM to (RM', M'T^M. 
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Now define a periodic operator Q(rh- • -tN) as fol­
lows : As before we denote by (RM a set of similar non-
overlapping regions in the unbounded 3A7r-dimensional 
space of the i\ such that <j?«,j/ is near-vanishing outside 
(Riif for all a; and we call (R' the region outside of all 
(RAf. Then Q is given by 

<2(*V "TN) = XI+X%-\ XN—ML in (RM (,Q, 
= F(xh-.-rN) in(R', (6*9j 

where F is a largely arbitrary, periodic function but 
chosen such that Q is everywhere twice differentiable. 
Q may be Fourier expanded as 

Q= £ G(q) expftq. ( r x +r 2 + • • • r*)] (6.10) 
q 

and is a well-behaved operator in our Hilbert space of 
periodic functions. It satisfies the following commuta­
tion relations: 

K , f ( ' « ) ]=K,«( '« - ry ) ]=0 (6.11) 
and 

1 1 
CJ £ P»2,Q] = — : £ ^ * = T P in all <$te, (6.12) 

—-i * i 

which may be combined to yield 

1 
[#,(?]=~P in all (Rjtf. (6.13) 

i 

In view of the fact that ^d is near vanishing in (ft', 
(6.13) may be substituted in (6.8) and yields 

(a'\P\a)M{Ej-Ea)(pt\Q\a). (6.14) 

Now the order of magnitude of (a'|(?|a) may be esti­
mated from the low-order perturbation expression (5.4) 
and is found to be a length independent of the dimen­
sion of the system, say 

(a'\Q\a) = 0(d). (6.15) 

When we substitute (5.28) into (5.21) we obtain 

<r'(aO=Y— Wl(«'lQl«)l2 

X p ( ^ - £ « - o ) ) - 6 ( E a , - £ « + c o ) ] . (6.16) 

In view of (6.15) and the difference of the two 8 func­
tions appearing in (6.16) we see that 

tt-»0:<r«'(«)~«n, n^2. (6.17) 

Thus the dc conductivity does indeed vanish. 

7. CONCLUSIONS 

We have seen that the essential property of the array 
of hydrogen atoms which assured its insulating char­
acteristics was the fact that each of its low-lying wave 
functions ^« consisted of a sum of disconnected func­

tions tya>M. It is a simple matter to verify that also the 
ground states and exciton states of a conventional in­
sulator with an energy gap (like an array of He atoms) 
have this property. Furthermore preliminary work 
indicates that the same criterion applies also to dis­
ordered insulators. Thus, it would seem that this dis­
connectedness of the wave function, rather than more 
special conditions like an energy gap, is the essential 
characteristic of insulators. 

APPENDIX 1. LOCALIZATION OF THE 
CENTER OF MASS 

Consider a system of AT one-dimensional particles, of 
coordinates xi, • • • XN on a periodic interval of length L. 
There are N potential wells and, in the sense of Sees. 3 
and 4, there is in zeroth-order one particle in each well. 
We wish to explore the distribution of an appropriately 
defined center of mass. 

For this purpose we define the operator 

P(X)=5P(X1+X2+' • 'XN-X), (Al.l) 

where dp is the periodic 5 function 

8P(x)^(l/L) Z *"*, g= (2w/L)(0, ± 1 , • • • ) . (A1.2) 
a 

Clearly the quantity (P(X))dX, where ( ) denotes 
expectation value, is the probability that the sum 
x\-\ XN has a value in the rang_e X, X+dX, modulo L. 

We begin by evaluating (P(X)) in the zeroth-order 
wave function 

wo(xi— XI)WQ(X2—Xt) • • • WQ(XN—XN) . (A1.3) 

This gives 

1 
P(X) = - £ exp[fg(Xi+ • • -XN-X)3FN(q), (A1.4) 

L Q 

where 

/

L/2 

w0
2(%)eiqxdx. (A1.5) 

-L/2 

For small q we may write 

F ( « ) « 1 - J Y + - - - , (A1.6) 

where b is a length of the order of the range of the 
Wannier function. Hence we can write 

logFN(q) = N logF(q) = Nb2q2 (A1.7) 
and 

FVfa^e-w1'***)*. (A1.8) 

This falls off so rapidly with q that the small q approxi­
mation is a posteriori justified. Substituting into (A1.4), 
and recalling the convention £ X y = 0 gives 

27ri/2iVri/2£ 

X £ exp{- [ (2 -mL) /2A 1 ^ ] 2 } . (A1.9) 
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<P(X)> 

A I A 
FIG. 6. (a) Localiza­

tion of the center of mass 
in a one-dimensional in­
sulator. (b) Nonlocaliza-
tion of the center of a 
mass in a one-dimen­
sional free electron gas. 

- L - L / 2 

(a) 

L/2 L 
X — 

<P(X)> 

-L/2 L/2 

X • 
(b) 

Thus, we see that X, which may be regarded as N 
times the center of mass, is localized—on the interval— 
L/2^X<L/2—in a region of width (bar1'2)!,1*2much 
narrower than L (see Fig. 6). It is clear that if exchange 
terms are included in the evaluation of (P(X)) or if the 
expectation value of P(X) is evaluated in the true 
eigenfunctions, $a=e*s<i>a(0), the general nature of the 
result is not altered. Thus, while the individual electron 
coordinates are of course spread all over the interval 
—L/2^x<L/2, the center of mass, X/N, is localized 
in an interval of width a/N112, where a is of the order 
of atomic dimensions. 

This state of affairs may be contrasted with that of 
a free electron gas. Here 

P(X) = ( 1 / i ) X * «r<<*<e*«<xi+...x*)) (ALIO) 
= (VX), 

i.e., X is entirely unlocalized [see Fig. 6(b)]. 
When we go from one to three dimensions we en­

counter a somewhat strange situation. If we call the 
cross-sectional area of our ring A, we find, in exact 
analogy with the one dimensional case that the width 
of P(X) is given by 

w<^(ALyi2<r*t2b, (ALU) 

which is much smaller than L, only for an extremely 
thin ring, for which 

AM/L^aWb-1!*-1*2. (A1.12) 

If all dimensions of the ring are of comparable magni­
tude (A1/2^L), then w^>L and the center of mass be­
comes delocalized. Referring to the regions (RM, defined 
in Sec. 5, we may say_that for the one and "thin" 
three-dimensional ring, X is restricted in each (KM to a 
narrow range of values, which do not overlap, while for 
the thick ring the values of X in different (RM overlap 
considerably. 

APPENDIX 2. ONE-PARTICLE DENSITY MATRIX 

The localization of the wave function is also reflected 
in the one-particle density matrix, 

^ ( r , r ' ) S ( ^ * ( r ' W r ) * J . (A2.1) 

To zeroth order, we find, e.g., in the ferromagnetic 
state, 

Pmm' (*,T ) = $m-l/28m'-l/2 

X E r w 0 ( r ' - R > o ( r - R , ) . (A2.2) 

Because of the exponential decay of the Wannier func­
tions, we can write, for \x'—x\<&L, 

/ w ( r , r ' ) < C « H « ' l / s (A2.3) 

where C is some constant and c is of the order of an 
atomic dimension. A result of this form persists to all 
orders of perturbation theory. 

It is tempting to suppose that this exponential be­
havior of p is characteristic only of insulators. This is 
not so. The same behavior is found for metallic alloys,13 

and even for free particles p vanishes for \r—r'|—»oo, 
although not exponentially. 

APPENDIX 3. MODEL EXHIBITING TRANSITION 
BETWEEN INSULATING AND 

CONDUCTING STATES 

The main body of this paper has been concerned with 
a characterization of the insulating state. In particular 
it was shown that under certain conditions (e.g., large 
lattice parameter) a system with one electron per 
atom, which in band theory would be a monovalent 
metal, will be an insulator. Presumably as a is de­
creased, the system eventually becomes a metal but 
the nature of this transition is not at present known. 
This Appendix deals first with a soluble model ex­
hibiting a transition of this general nature. 

We consider a cubic lattice of N fixed nuclei and N 
interacting electrons and will be concerned with di-
agonalizing the Hamiltonian H within the Hilbert 
space spanned by the Bloch wave functions, <pk, of the 
lowest band. We note that the total z spin, Sz, and 
total wave vector q, which characterizes the behavior 
under over-all translation by a lattice vector, are good 
quantum numbers. 

When Sz has its maximum value N/29 our Hilbert 
space contains only one state vector, ^ , with all elec­
tron spins aligned and q=0. The diagonalization of H 
is then trivial: 

£iW2.o=L *k+J H [(kik2 |w|kik2) 
k ki,k2 

- ( k i k 2 | « | k 2 k , ) ] , (A3.1) 

where all k run over the fundamental Brillouin zone. 
For Sz=N/2— 1, and given q our Hilbert space con­

tains N state vectors, ^ k , which differ from ^ by 
having a spin-up electron missing in <pk, and having a 
spin-down electron present in state <pk+q: 

#k==ak+qj*ak+\[/. (A3.2) 

The eigenvectors of H must then be of the form 

¥ = E ^ ( k ) * * , : (A3.3) 

13 D. C. Mattis and J. Bardeen, Phys. Rev. I l l , 412 (1958). 
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FIG. 7. (a) The func­
tion €k (schematic), (b) 
The function t\ (k) for q 
— (ir/a) (schematic), (c) 
The function i){k) for 
g>0but#<<C(7r/a) (sche­
matic). 

and the diagonalization of the Hamiltonian leads to 
the equation 

[ , ( k ) - £ ] J ( k ) + E «(k,k'M(k') = 0, (A3.4) 

and 
1j(k)=ek+q—€k, 

u(Jk,V)^$t*mv). 

(A3.5) 

(A3.6) 

It should be noted that (A3A) has a structure analogous 
to a one-particle Schroedinger equation. We now study 
its solution in two especially simple cases. 

Case I. Contact Potential 

We first consider the case in which w(k,k') is assumed 
to have the form 

u(k,V) = \ZyN6kV+(l/N)l, (A3.7) 

where 7 is a constant and X is a strength parameter. 
Then defining 

E'=E-\yN, (A3.8) 

Eq. (A3.4) becomes 

Zri(k)-E'lA(k)+(\/N)Z:A(k') = 0. (A3.9) 

This type of equation is well known from the theory of 

superconductivity. We first introduce 

1 
e ra—E^(kO (A3.10) 

N k' 

and then solve (A3.9) in terms of a: 

4(k) = -Xer/[ij(k)--jE']. (A3.ll) 

Summation on k results in the relation 

l+X(l/tf) E {l/D?(k)-£']} =0 (A3.12) 

which is an implicit equation for Ef. 
Now q(k), Eq. (A3.5), is a periodic function of k, 

shown schematically in Figs. 7(b) and 7(c), whose 
minimum and maximum values we denote by Trjo. We 
now define 

F(E')= (1/N) £ { l / [ „ (k ) -£ ' ]} (A3.13) 

and study the solutions of (A3.12) by graphically 
equating 

F(ET)=-l/\, (A3.14) 

(see Fig. 8). For \rj\ ^rjo it is useful to introduce the 
limiting function 

F(E)=limF(E) 
\Tr)\N/J 7?(k)-

-dk. (A3.15) 
E 

Notice in particular that because of the volume ele­
ment in dk, F(=t)7o) are finite, and call 

p(-rio)^Fo. (A3.16) 

Then clearly for attractive interaction, X<0, we have 
the following possible situations: 

(a) if | X | > 1 / J F 0 , there is an isolated ground state 
plus a continuum; 

(b) if IXI < 1/Fo, there is only a continuum. 

In situation (a) the ground state is a spin-wave state, 
in which the spin-up hole and spin-down electron are 
bound together. It is straightforward to verify that the 
corresponding wave function has the disconnectedness 
property typical of insulating states. The continuum 
states however describe free electron hole pairs which 
conduct. In situation (b) we have only conducting 
states. Thus, as | X | decreases from values > 1/Fo to 0, 
we get a sharp transition from an insulating to a con-

FIG. 8. The function 
F(E'), Eq. (A3.13). 

A3.ll


T H E O R Y O F I N S U L A T I N G S T A T E A181 

ducting ground state. This is our soluble model ex­
hibiting a sharp transition. 

Another case, of great physical interest, which does 
not exhibit a transition is Case II. 

Case II. Coulomb Potential 

^(k,k/) = X [ 7 ^ k k , + ( l /^)( l -5 k k 0/(k,k / ) ] (A3.17) 

where for k«k ' , 

/(k,k') «(1/a21 k - k' | 2 ) . (A3.18) 

Just as in the ordinary two-particle problem with 
Coulomb interaction one obtains an isolated bound 
ground state, no matter how weak the interaction is, 
so also in the present case we obtain an insulating spin-
wave ground state, describing a bound electron hole 
pair, for all negative values of A. 

Speculations about the Transition between 
Insulating and Metallic States 

We conclude this Appendix with speculations about 
the nature of the ground state as Sz decreases from its 
maximum value N/2 to 0. 

The ground state with Sz=N/2 is insulating. With 
Sz=N/2— 1 the ground state is a spin-wave state with 
that wave number q which results in the lowest energy: 
For strong Coulomb interaction, q=0, maximizing the 
effect of the interaction (ferromagnet); for weak 
Coulomb interaction q= (ir/afifi) which gives the 
lowest band energy [see Fig. 7(b)]; in intermediate 
cases the lowest state may have some other value of q 
(spiral magnetization). 

When Sz=N/2—n, with n<KN, the ground state will 
have n of the lowest energy spin waves and still be an 
insulator. 

However, when n becomes comparable to N, inter­
actions between spin waves must be taken into account. 
For sufficiently large n, the spin-wave excitons may 
overlap sufficiently so as to substantially screen the 
Coulomb attraction between electrons and holes and 
thus finally lead to a dissolution of the bound pairs. 
This would then result in a conducting ground state.14 

On the other hand, the overlap may not sufficiently 
weaken the attraction, so that an insulating ground 
state can result even for Sz=0. This is the case which 
has been the main subject of this paper. 

14 Compare an analogous discussion in Sec. 2 of N. F. Mott, 
Phil. Mag. 6, 287 (1961). 


